Global well-posedness of the MHD equations via the comparison principle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...

متن کامل

On the Global Well-posedness for the Axisymmetric Euler Equations

This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in critical Besov spaces B 1+3/p p,1 . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity.

متن کامل

On Global Well-Posedness of the Lagrangian Averaged Euler Equations

We study the global well-posedness of the Lagrangian averaged Euler equations in three dimensions. We show that a necessary and sufficient condition for the global existence is that the BMO norm of the stream function is integrable in time. We also derive a sufficient condition in terms of the total variation of certain level set functions, which guarantees the global existence. Furthermore, we...

متن کامل

Global Well-posedness of the Viscous Boussinesq Equations

We prove the global well-posedness of the viscous incompressible Boussinesq equations in two spatial dimensions for general initial data in Hm with m ≥ 3. It is known that when both the velocity and the density equations have finite positive viscosity, the Boussinesq system does not develop finite time singularities. We consider here the challenging case when viscosity enters only in the veloci...

متن کامل

On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces

In this paper, we prove the local well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth solutions. Specially, a recovered proof of [7] for the incompressible Euler equation is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2018

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-017-9217-8